Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599637

RESUMO

As an important habitat for microorganisms, the phyllosphere has a great impact on plant growth and health, and changes in phyllosphere microorganisms are closely related to the occurrence of leaf diseases. However, there remains a limited understanding regarding alterations to the microbial community in the phyllosphere resulting from pathogen infections. Here, we analyzed and compared the differences in phyllosphere microorganisms of powdery mildew cucumber from three disease severity levels (0% < L1 < 30%, 30% ≤ L2 < 50%, L3 ≥ 50%, the number represents the lesion coverage rate of powdery mildew on leaves). There were significant differences in α diversity and community structure of phyllosphere communities under different disease levels. Disease severity altered the community structure of phyllosphere microorganisms, Rosenbergiella, Rickettsia, and Cladosporium accounted for the largest proportion in the L1 disease grade, while Bacillus, Pantoea, Kocuria, and Podosphaera had the highest relative abundance in the L3 disease grade. The co-occurrence network analysis of the phyllosphere microbial community indicated that the phyllosphere bacterial community was most affected by the severity of disease. Our results suggested that with the development of cucumber powdery mildew, the symbiotic relationship between species was broken, and the entire bacterial community tended to compete.


Assuntos
Ascomicetos , Cucumis sativus , Microbiota , Doenças das Plantas , Cucumis sativus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética
2.
Pest Manag Sci ; 79(1): 140-151, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36107970

RESUMO

BACKGROUND: Aphis gossypii Glover is the main pest found in most cucumber-producing areas. Melatonin (MT) has been widely studied in protecting plants from environmental stresses and pathogens. However, little knowledge is available on the impact of MT on insect resistance. RESULTS: The fecundity of aphids on MT-treated cucumber leaves was inhibited. Interestingly, MT-treated plants were more attractive to aphids, which would prevent the large-scale transmission of viruses caused by the random movement of aphids. Meanwhile, MT caused varying degrees of change in enzyme activities related to methylesterified HG degradation, antioxidants, defense systems and membrane lipid peroxidation. Furthermore, transcriptomic analysis showed that MT induced 2360 differentially expressed genes (DEGs) compared with the control before aphid infection. These DEGs mainly were enriched in hormone signal transduction, MAPK signaling pathway, and plant-pathogen interaction, revealing that MT can help plants acquire inducible resistance and enhance plant immunity. Subsequently, 2397 DEGs were identified after aphid infection. Further analysis showed that MT-treated plants possessed stronger JA signal, reactive oxygen species stability, and the ability of flavonoid synthesis under aphid infection, while mediating plant growth and sucrose metabolism. CONCLUSION: In summary, MT as an environmentally friendly substance mitigated aphid damage to cucumbers by affecting the aphids themselves and enhancing plant resistance. This will facilitate exploring sustainable MT-based strategies for cucumber aphid control. © 2022 Society of Chemical Industry.


Assuntos
Cucumis sativus , Melatonina , Animais , Defesa das Plantas contra Herbivoria , Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...